### TIP 0404-07

OLD TIP NO. 014- 17 ISSUED - 1970 REVISED - 1984 REVISED - 1989 REVISED - 1991 REVISED - 1994 REVISED - 2000 REVISED - 2004 REVISED - 2005 © 2005 TAPPI

The information and data contained in this document were prepared by a technical committee of the Association. The committee and the Association assume no liability or responsibility in connection with the use of such information or data, including but not limited to any liability or responsibility under patent, copyright, or trade secret laws. The user is responsible for determining that this document is the most recent edition published.

# Paper machine drying rate

#### Scope

This TIP outlines procedures for calculating paper machine drying rates for coated and uncoated papers and provides drying rate curves. The objective of the TIP is to define rate of water removal on a common basis for mills to use to compare a particular machine to past performance and to other machines. The definition of drying rate and its calculation are simple to permit widespread use. These procedures cannot be used for machines with auxiliary drying equipment such as infrared dryers and impingement dryers unless these auxiliary dryers are shut off.

Data points on the curves represent observed performance of existing machines. Lines represent calculated average and two-sigma variation of plotted data.

The calculation does not identify or account for factors that affect drying rate. There are many variables that can affect calculated drying rate. These factors include:

- Sheet furnish
- Syphon design
- Use of dryer bars
- Pocket ventilation
- Dryer fabric application
- Dryer configuration
- Dryer felting
- Dryer surface scale
- Hood humidity
- Reel moisture content
- Type of pressing
- · Amount of pressing
- Breaker stack

#### Safety precautions

This TIP outlines a calculation procedure. No safety precautions are required.

#### Definition of drying rate

The drying rate  $(R_W)$  as applied to drying on the machine is defined as the amount of water evaporated per hour per unit area of drying surface. Drying surface is defined as the total circumferential length of steam-heated dryers that are in contact with the sheet multiplied by the width of the sheet at the reel. Drying rate is expressed as pounds per hour per square foot in customary units and as kilograms per hour per square meter in SI units, and reported at the average steam temperature.

where:

 $T_{avg}$  = average saturation steam temperature, °C (°F)  $T_i$  = saturation steam temperature, of dryer (i), °C (°F) N = number of steam-heated dryers that contact the sheet

Saturation steam temperatures can be determined from measured dryer steam pressures using common steam tables (1, 2). Abbreviated excerpts from these references are included in this TIP.

Note that a weighted average steam pressure is not necessarily equal to the corresponding weighted average steam temperature. This is because steam pressure and steam temperature are not linearly related. Also note that the temperature of the saturated steam in the dryer is higher than the temperature of the condensate leaving the dryer.

#### Drying rate for coated papers

Equations 1 and 2 can also be used to compute the drying rate for coated papers. However, entering dryness E must generally be calculated from information on coating weight and moisture, while reel basis weight B can be either used directly or computed from the raw stock basis weight. The equations for these calculations are as follows:

$$B = \frac{B_c (P/100) + W}{(L/100)} \tag{4}$$

$$E = 100 - 100 \left[ \frac{B_c \left( 1 - \frac{P}{100} \right) + W\left( \frac{100}{C} - 1 \right)}{B_c + \frac{(100W)}{C}} \right]$$
 (5)

in which the variables are defined as:

 $B_c$  = basis weight of the sheet entering the coater (wet basis), kg/m<sup>2</sup> (lb/ream)

W = dry coating weight applied, kg/m² (lb/ream)
P = percent dryness of sheet entering the coater

C = percent coating solids in coating solution as applied to the sheet (wet basis).

Equations 4 and 5 can also be used to calculate the drying rate after a size press, where W is the dry weight per ream of the starch picked up and C is the percent starch solids in the size solution.

An example of these equations follows in both customary and SI units:

#### **Customary units**

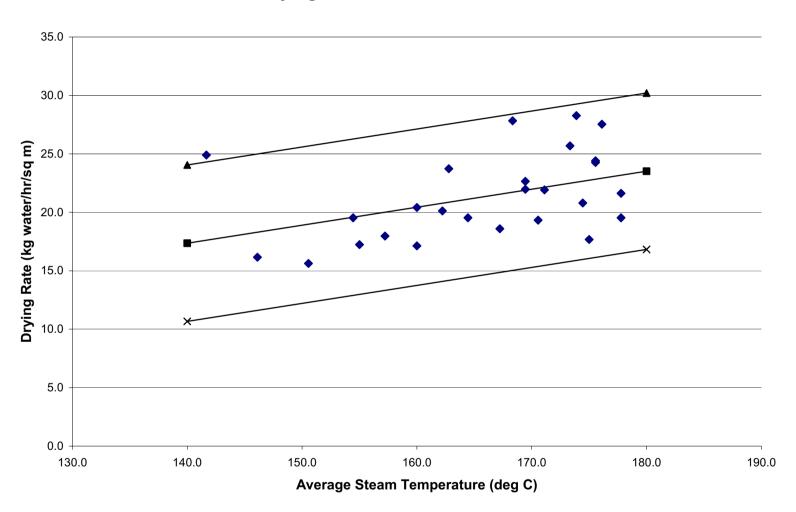
S = 2000 ft/min

 $B_c$  = 43 lb/ream into coater (includes moisture)

L = 96% dryness (fiber and coating) leaving the dryer section

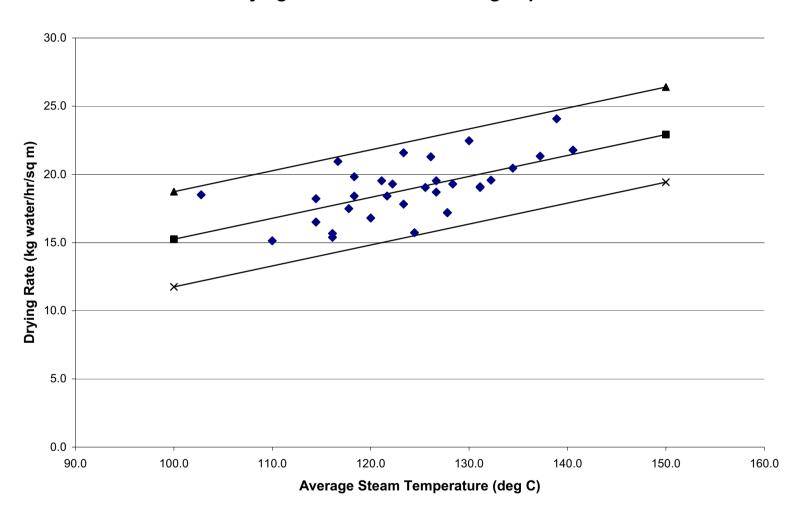
P = 94% dry (wet basis) entering the coater

 $A = 3300 \text{ ft}^2/\text{ream}$  D = 5.0 ft diameterN = 6 coater dryers


W = 8 lb of dry coating applied per ream

C = 60% coating solids

| Press. | °C     | Press. | °C     | Press. | °C     | Press. | °C     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| (kPa)  |        | (kPa)  |        | (kPa)  |        | (kPa)  |        |
| 10     | 45.81  | 210    | 121.78 | 420    | 145.40 | 820    | 171.46 |
| 15     | 53.97  | 215    | 122.53 | 430    | 146.26 | 830    | 171.97 |
| 20     | 60.06  | 220    | 123.57 | 440    | 147.10 | 840    | 172.47 |
| 25     | 64.97  | 225    | 124.00 | 450    | 147.93 | 850    | 172.96 |
| 30     | 69.10  | 230    | 124.71 | 460    | 148.74 | 860    | 173.46 |
| 35     | 72.69  | 235    | 125.41 | 470    | 149.54 | 870    | 173.94 |
| 40     | 75.87  | 240    | 126.10 | 480    | 150.32 | 880    | 174.43 |
| 45     | 78.73  | 245    | 126.77 | 490    | 151.10 | 890    | 174.90 |
| 50     | 81.33  | 250    | 127.44 | 500    | 151.86 | 900    | 175.38 |
| 55     | 83.72  | 255    | 128.09 | 510    | 152.60 | 910    | 175.85 |
| 50     | 85.94  | 260    | 128.73 | 520    | 153.34 | 920    | 176.31 |
| 65     | 88.01  | 265    | 129.37 | 530    | 154.06 | 930    | 176.78 |
| 70     | 89.95  | 270    | 129.99 | 540    | 154.78 | 940    | 177.24 |
| 75     | 91.78  | 275    | 130.60 | 550    | 155.48 | 950    | 177.69 |
| 80     | 93.50  | 280    | 131.21 | 560    | 156.17 | 960    | 178.14 |
| 85     | 95.14  | 285    | 131.81 | 570    | 156.86 | 970    | 178.59 |
| 90     | 96.71  | 290    | 132.39 | 580    | 157.53 | 980    | 179.03 |
| 95     | 98.20  | 295    | 132.97 | 590    | 158.20 | 990    | 179.47 |
| 100    | 99.63  | 300    | 133.55 | 600    | 158.85 | 1000   | 179.91 |
| 105    | 101.00 | 305    | 134.11 | 610    | 159.50 | 1020   | 180.77 |
| 110    | 102.31 | 310    | 134.67 | 620    | 160.14 | 1040   | 181.62 |
| 115    | 103.58 | 315    | 135.22 | 630    | 160.77 | 1060   | 182.46 |
| 120    | 104.80 | 320    | 135.76 | 640    | 161.39 | 1080   | 183.28 |
| 125    | 105.99 | 325    | 136.30 | 650    | 162.01 | 1100   | 184.09 |
| 130    | 107.13 | 330    | 136.83 | 660    | 162.61 | 1120   | 184.89 |
| 135    | 108.24 | 335    | 137.35 | 670    | 163.21 | 1140   | 185.68 |
| 140    | 109.31 | 340    | 137.87 | 680    | 163.81 | 1160   | 186.46 |
| 145    | 110.36 | 345    | 138.38 | 690    | 164.39 | 1180   | 187.23 |
| 150    | 111.37 | 350    | 138.88 | 700    | 164.97 | 1200   | 187.99 |
| 155    | 112.36 | 355    | 139.38 | 710    | 165.55 | 1220   | 188.74 |
| 160    | 133.32 | 360    | 139.87 | 720    | 166.11 | 1240   | 189.48 |
| 165    | 114.26 | 365    | 140.36 | 730    | 166.67 |        |        |
| 170    | 115.17 | 370    | 140.84 | 740    | 167.23 |        |        |
| 175    | 116.06 | 375    | 141.32 | 750    | 167.78 |        |        |
| 180    | 116.93 | 380    | 141.79 | 760    | 168.32 |        |        |
| 185    | 117.79 | 385    | 142.26 | 770    | 168.86 |        |        |
| 190    | 118.62 | 390    | 142.72 | 780    | 169.39 |        |        |
| 195    | 119.43 | 395    | 143.18 | 790    | 169.91 |        |        |
| 200    | 120.23 | 400    | 143.63 | 800    | 170.43 |        |        |
| 205    | 121.02 | 410    | 144.53 | 810    | 170.95 |        |        |


Table 2. Saturated Steam Temperatures (S. I. Units).

# **TAPPI Drying Rate - Bleached Board - Metric**



**Fig. 4M.** Bleached board drying rate curve.

### **TAPPI Drying Rate - Wood-containing Paper - Metric**



**Fig. 7M.** Wood-containing paper drying rate curve.

# **TAPPI Drying Rate - Average Lines - Metric**

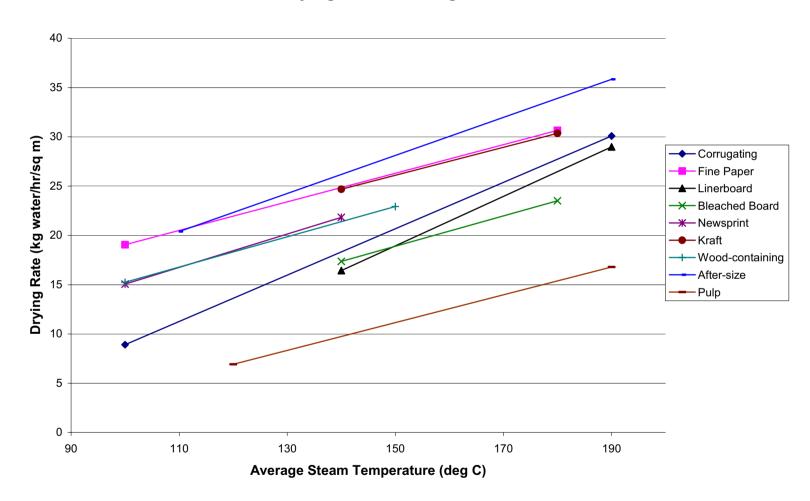



Fig. 10M. Average curves for all machines.